Python Data Science Handbook

Python Data Science Handbook PDF
Author: Jacob T. Vanderplas
Publisher: O'Reilly Media
ISBN: 9781491912058
Size: 36.65 MB
Format: PDF, ePub, Mobi
Category : Computers
Languages : en
Pages : 529
View: 7675

Get Book

For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all--IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you'll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms

Python Data Science Handbook

Python Data Science Handbook PDF
Author: Jake VanderPlas
Publisher: "O'Reilly Media, Inc."
ISBN: 1491912138
Size: 34.10 MB
Format: PDF, Mobi
Category : Computers
Languages : en
Pages : 548
View: 5013

Get Book

For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms

Hands On Data Analysis With Pandas

Hands On Data Analysis with Pandas PDF
Author: Stefanie Molin
Publisher: Packt Publishing Ltd
ISBN: 1800565917
Size: 78.85 MB
Format: PDF, ePub, Mobi
Category : Computers
Languages : en
Pages : 788
View: 6189

Get Book

Knowing how to work with data to extract insights generates significant value. This book will help you to develop data analysis skills using a hands-on approach and real-world data. You’ll get up to speed with pandas 1.x in no time and build some software engineering skills in the process, vastly expanding your data science toolbox.

Einf Hrung In Machine Learning Mit Python

Einf  hrung in Machine Learning mit Python PDF
Author: Andreas C. Müller
Publisher: O'Reilly
ISBN: 3960101112
Size: 54.70 MB
Format: PDF, Docs
Category : Computers
Languages : de
Pages : 378
View: 657

Get Book

Machine Learning ist zu einem wichtigen Bestandteil vieler kommerzieller Anwendungen und Forschungsprojekte geworden, von der medizinischen Diagnostik bis hin zur Suche nach Freunden in sozialen Netzwerken. Um Machine-Learning-Anwendungen zu entwickeln, braucht es keine großen Expertenteams: Wenn Sie Python-Grundkenntnisse mitbringen, zeigt Ihnen dieses Praxisbuch, wie Sie Ihre eigenen Machine-Learning-Lösungen erstellen. Mit Python und der scikit-learn-Bibliothek erarbeiten Sie sich alle Schritte, die für eine erfolgreiche Machine-Learning-Anwendung notwendig sind. Die Autoren Andreas Müller und Sarah Guido konzentrieren sich bei der Verwendung von Machine-Learning-Algorithmen auf die praktischen Aspekte statt auf die Mathematik dahinter. Wenn Sie zusätzlich mit den Bibliotheken NumPy und matplotlib vertraut sind, hilft Ihnen dies, noch mehr aus diesem Tutorial herauszuholen. Das Buch zeigt Ihnen: - grundlegende Konzepte und Anwendungen von Machine Learning - Vor- und Nachteile weit verbreiteter maschineller Lernalgorithmen - wie sich die von Machine Learning verarbeiteten Daten repräsentieren lassen und auf welche Aspekte der Daten Sie sich konzentrieren sollten - fortgeschrittene Methoden zur Auswertung von Modellen und zum Optimieren von Parametern - das Konzept von Pipelines, mit denen Modelle verkettet und Arbeitsabläufe gekapselt werden - Arbeitsmethoden für Textdaten, insbesondere textspezifische Verarbeitungstechniken - Möglichkeiten zur Verbesserung Ihrer Fähigkeiten in den Bereichen Machine Learning und Data Science Dieses Buch ist eine fantastische, super praktische Informationsquelle für jeden, der mit Machine Learning in Python starten möchte – ich wünschte nur, es hätte schon existiert, als ich mit scikit-learn anfing! Hanna Wallach, Senior Researcher, Microsoft Research

Python Data Science Handbook

Python Data Science Handbook PDF
Author: Jacob T. Vanderplas
Publisher:
ISBN: 9781491912041
Size: 53.42 MB
Format: PDF, ePub, Mobi
Category : Data mining
Languages : en
Pages : 529
View: 5521

Get Book

"For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all--IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python."--Provided by publisher.

Statistik Workshop F R Programmierer

Statistik Workshop f  r Programmierer PDF
Author: Allen B. Downey
Publisher: O'Reilly Germany
ISBN: 3868993436
Size: 61.33 MB
Format: PDF, ePub, Docs
Category : Computers
Languages : de
Pages : 160
View: 2353

Get Book

Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.

Python Data Science Handbook

Python Data Science Handbook PDF
Author: Jacob T. Vanderplas
Publisher:
ISBN: 9781491912041
Size: 17.76 MB
Format: PDF, ePub, Mobi
Category : Data mining
Languages : en
Pages : 529
View: 4858

Get Book


Python Data Science

Python Data Science PDF
Author: Jessica Rizzo
Publisher:
ISBN: 9781081068004
Size: 33.53 MB
Format: PDF
Category :
Languages : en
Pages : 334
View: 3460

Get Book

If you're tired of licensing third-party software for data analysis, Python Data Science will help you do it for yourself! Recently, more and more companies are learning that they need to make DATA-DRIVEN decisions. And with big data and data science on the rise, we now have more data than we know what to do with. In fact, without a doubt, you have already experienced data science in one way or another. Obviously, you are interacting with data science products every time you search for information on the web by using search engines such as Google, or asking for directions with your mobile phone. Data science is the science and technology focused on collecting raw data and processing it in an effective manner. It is the combination of concepts and methods that make it possible to give meaning and understandability to huge volumes of data. Data science has been the force behind resolving some of our most common daily tasks for several years. In nearly all of our daily work, we directly or indirectly work on storing and exchanging data. With the rapid development of technology, the need to store data effectively is also increasing. That's why it needs to be handled properly. Basically, data science unearths the hidden insights of raw-data and uses them for productive output. Python is often used in data science today because it is a mature programming language that has excellent properties for newbie programmers. Some of the most remarkable of these properties are its easy to read code, suppression of non-mandatory delimiters, dynamic typing, and dynamic memory usage. Python is an interpreted language, and it can be executed in the Python console without any need to compile to machine language. "Python Data Science" teaches a complete course of data science, including key topics like data integration, data mining, python etc. We will explore NumPy for numerical data, Pandas for data analysis, IPython, Scikit-learn and Tensorflow for machine learning and business. Each of the chapters in this book is devoted to one of the most interesting aspects of data analysis and processing. The following are some of the major topics covered in Python Data Science: Understanding Data Science Getting Started with Python for Data Scientists Descriptive statistics Data Analysis and Libraries NumPy Arrays and Vectorized Computation Data Analysis with Pandas Data Visualization Data Mining Classifying with Scikit-learn Estimators Giving Computers the Ability to Learn from Data Training Machine Learning Algorithms The Python ecosystem for data science discussed within Python Data Science includes SciPy, NumPy, Matplotlib, Pandas, and Scikit-learn, which provides all of the data science algorithms. Data processing and analysis is one of the hottest areas of IT, where developers who can handle projects of any level, from social networks to trained systems, are constantly required. We hope this book will be the starting point for your journey into the fascinating world of Data Science. To get started on your Python adventure, just scroll back up and click the 'Buy' button.

Data Science F R Dummies

Data Science f  r Dummies PDF
Author: Lillian Pierson
Publisher: John Wiley & Sons
ISBN: 352780675X
Size: 52.23 MB
Format: PDF, Mobi
Category : Mathematics
Languages : de
Pages : 382
View: 1955

Get Book

Daten, Daten, Daten? Sie haben schon Kenntnisse in Excel und Statistik, wissen aber noch nicht, wie all die Datensätze helfen sollen, bessere Entscheidungen zu treffen? Von Lillian Pierson bekommen Sie das dafür notwendige Handwerkszeug: Bauen Sie Ihre Kenntnisse in Statistik, Programmierung und Visualisierung aus. Nutzen Sie Python, R, SQL, Excel und KNIME. Zahlreiche Beispiele veranschaulichen die vorgestellten Methoden und Techniken. So können Sie die Erkenntnisse dieses Buches auf Ihre Daten übertragen und aus deren Analyse unmittelbare Schlüsse und Konsequenzen ziehen.

Python Data Science Handbook

Python Data Science Handbook PDF
Author: Oliver Soranson
Publisher: Independently Published
ISBN: 9781706630067
Size: 46.37 MB
Format: PDF, ePub, Mobi
Category :
Languages : en
Pages : 181
View: 280

Get Book

This book in detail will deal with a lot of concepts in layman explanation. Data science is one of the pioneers and most fast-developing tools now to develop applications. A little to know in a better way of this guide will help you understand a lot of things for the data science application. Here in this book, we will deal with many concepts that are either directly or indirectly linked to data science. First, we will start with a brief explanation of the data. Data is one of the most important things today. We will classify the data many times and in the next, we will discuss in detail the applications that machine learning and data science that deals with. In the next section, we will have a topic that will discuss all basic concepts in very little time. We will also discuss an example model that helps us understand things vividly. Also, there are a lot of concepts like NumPy, Pandas that should be dealt with in detail. We will also discuss data operations in detail. These are important and easy to learn. In the next few chapters, we will discuss topics like privacy and ethics. Below we will in detail list the main topics that are included in the book. · Explanation of data and types of data · A lot of explanation about third party libraries · Introduction to python · Introduction to a lot of python basic concepts · Basics of machine learning · Basics of data science like data modeling · Understanding complex topics like NumPy and pandas · A lot of description about privacy and ethics Why are you waiting for? Go grab this book.

Grundkurs K Nstliche Intelligenz

Grundkurs K  nstliche Intelligenz PDF
Author: Wolfgang Ertel
Publisher: Springer-Verlag
ISBN: 9783528059248
Size: 67.90 MB
Format: PDF, ePub, Docs
Category :
Languages : de
Pages : 334
View: 1599

Get Book


Python Data Science Handbook

Python Data Science Handbook PDF
Author: Jake VanderPlas
Publisher: "O'Reilly Media, Inc."
ISBN: 1491912146
Size: 39.98 MB
Format: PDF, Docs
Category : Computers
Languages : en
Pages : 548
View: 2396

Get Book

For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms

Handbuch Data Science

Handbuch Data Science PDF
Author: Stefan Papp
Publisher: Carl Hanser Verlag GmbH Co KG
ISBN: 3446459758
Size: 25.35 MB
Format: PDF, Mobi
Category : Computers
Languages : de
Pages : 320
View: 1780

Get Book

• Umfassender Überblick über die verschiedenen Anwendungsfelder von Data Science • Fallbeispiele aus der Praxis machen die beschriebenen Konzepte greifbar • Vermittelt das notwendige Wissen, um einfache Datenanalyse-Projekte durchzuführen Dieses Buch bietet Ihnen einen Überblick über die verschiedenen Aspekte von Data Science und beschreibt, welchen Wert Sie in einer Big Data-Umgebung aus Daten generieren. So können z. B. Unternehmen auf Basis analysierter Daten schneller Entscheidungen treffen, Kosten reduzieren oder neue Märkte erschließen. Das Buch nähert sich dem Thema Data Science von mehreren Seiten. Zum einen zeigt es, wie Sie Big Data-Plattformen aufbauen und einzelne Tools auf Daten anwenden. Darüber hinaus werden statistisch-mathematische sowie rechtliche Themen angeschnitten. Abgerundet wird das Buch mit Fallbeispielen aus der Praxis, die veranschaulichen wie aus Daten generiertes Wissen unterschiedliche Industrien nachhaltig verändert. Nach der Lektüre des Buches wird der Leser in der Lage sein, einfache Datenanalyse-Projekte durchzuführen.

The Data Science Handbook

The Data Science Handbook PDF
Author: Field Cady
Publisher: John Wiley & Sons
ISBN: 1119092922
Size: 79.91 MB
Format: PDF
Category : Mathematics
Languages : en
Pages : 416
View: 4808

Get Book

A comprehensive overview of data science covering the analytics, programming, and business skills necessary to master the discipline Finding a good data scientist has been likened to hunting for a unicorn: the required combination of technical skills is simply very hard to find in one person. In addition, good data science is not just rote application of trainable skill sets; it requires the ability to think flexibly about all these areas and understand the connections between them. This book provides a crash course in data science, combining all the necessary skills into a unified discipline. Unlike many analytics books, computer science and software engineering are given extensive coverage since they play such a central role in the daily work of a data scientist. The author also describes classic machine learning algorithms, from their mathematical foundations to real-world applications. Visualization tools are reviewed, and their central importance in data science is highlighted. Classical statistics is addressed to help readers think critically about the interpretation of data and its common pitfalls. The clear communication of technical results, which is perhaps the most undertrained of data science skills, is given its own chapter, and all topics are explained in the context of solving real-world data problems. The book also features: • Extensive sample code and tutorials using Python™ along with its technical libraries • Core technologies of “Big Data,” including their strengths and limitations and how they can be used to solve real-world problems • Coverage of the practical realities of the tools, keeping theory to a minimum; however, when theory is presented, it is done in an intuitive way to encourage critical thinking and creativity • A wide variety of case studies from industry • Practical advice on the realities of being a data scientist today, including the overall workflow, where time is spent, the types of datasets worked on, and the skill sets needed The Data Science Handbook is an ideal resource for data analysis methodology and big data software tools. The book is appropriate for people who want to practice data science, but lack the required skill sets. This includes software professionals who need to better understand analytics and statisticians who need to understand software. Modern data science is a unified discipline, and it is presented as such. This book is also an appropriate reference for researchers and entry-level graduate students who need to learn real-world analytics and expand their skill set. FIELD CADY is the data scientist at the Allen Institute for Artificial Intelligence, where he develops tools that use machine learning to mine scientific literature. He has also worked at Google and several Big Data startups. He has a BS in physics and math from Stanford University, and an MS in computer science from Carnegie Mellon.