Programming Massively Parallel Processors

Programming Massively Parallel Processors PDF
Author: David B. Kirk
Publisher: Morgan Kaufmann
ISBN: 9780128119860
Size: 66.36 MB
Format: PDF, ePub
Category :
Languages : en
Pages : 568
View: 5334

Get Book

Programming Massively Parallel Processors: A Hands-on Approach, Third Edition shows both student and professional alike the basic concepts of parallel programming and GPU architecture, exploring, in detail, various techniques for constructing parallel programs. Case studies demonstrate the development process, detailing computational thinking and ending with effective and efficient parallel programs. Topics of performance, floating-point format, parallel patterns, and dynamic parallelism are covered in-depth. For this new edition, the authors have updated their coverage of CUDA, including coverage of newer libraries, such as CuDNN, moved content that has become less important to appendices, added two new chapters on parallel patterns, and updated case studies to reflect current industry practices. Teaches computational thinking and problem-solving techniques that facilitate high-performance parallel computing Utilizes CUDA version 7.5, NVIDIA's software development tool created specifically for massively parallel environments Contains new and updated case studies Includes coverage of newer libraries, such as CuDNN for Deep Learning

Programming Massively Parallel Processors

Programming Massively Parallel Processors PDF
Author: David B. Kirk
Publisher: Newnes
ISBN: 0123914183
Size: 59.74 MB
Format: PDF, ePub, Mobi
Category : Computers
Languages : en
Pages : 514
View: 3853

Get Book

Programming Massively Parallel Processors: A Hands-on Approach, Second Edition, teaches students how to program massively parallel processors. It offers a detailed discussion of various techniques for constructing parallel programs. Case studies are used to demonstrate the development process, which begins with computational thinking and ends with effective and efficient parallel programs. This guide shows both student and professional alike the basic concepts of parallel programming and GPU architecture. Topics of performance, floating-point format, parallel patterns, and dynamic parallelism are covered in depth. This revised edition contains more parallel programming examples, commonly-used libraries such as Thrust, and explanations of the latest tools. It also provides new coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more; increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism; and two new case studies (on MRI reconstruction and molecular visualization) that explore the latest applications of CUDA and GPUs for scientific research and high-performance computing. This book should be a valuable resource for advanced students, software engineers, programmers, and hardware engineers. New coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more Increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism Two new case studies (on MRI reconstruction and molecular visualization) explore the latest applications of CUDA and GPUs for scientific research and high-performance computing

Programming Massively Parallel Processors

Programming Massively Parallel Processors PDF
Author: David B. Kirk
Publisher: Elsevier
ISBN: 9780123814739
Size: 18.42 MB
Format: PDF
Category : Computers
Languages : en
Pages : 280
View: 2996

Get Book

Programming Massively Parallel Processors discusses the basic concepts of parallel programming and GPU architecture. Various techniques for constructing parallel programs are explored in detail. Case studies demonstrate the development process, which begins with computational thinking and ends with effective and efficient parallel programs. This book describes computational thinking techniques that will enable students to think about problems in ways that are amenable to high-performance parallel computing. It utilizes CUDA (Compute Unified Device Architecture), NVIDIA's software development tool created specifically for massively parallel environments. Studies learn how to achieve both high-performance and high-reliability using the CUDA programming model as well as OpenCL. This book is recommended for advanced students, software engineers, programmers, and hardware engineers. Teaches computational thinking and problem-solving techniques that facilitate high-performance parallel computing. Utilizes CUDA (Compute Unified Device Architecture), NVIDIA's software development tool created specifically for massively parallel environments. Shows you how to achieve both high-performance and high-reliability using the CUDA programming model as well as OpenCL.

Programming Massively Parallel Processors

Programming Massively Parallel Processors PDF
Author: David B. Kirk
Publisher: Morgan Kaufmann
ISBN: 012811987X
Size: 10.25 MB
Format: PDF, Kindle
Category : Computers
Languages : en
Pages : 576
View: 4310

Get Book

Programming Massively Parallel Processors: A Hands-on Approach, Third Edition shows both student and professional alike the basic concepts of parallel programming and GPU architecture, exploring, in detail, various techniques for constructing parallel programs. Case studies demonstrate the development process, detailing computational thinking and ending with effective and efficient parallel programs. Topics of performance, floating-point format, parallel patterns, and dynamic parallelism are covered in-depth. For this new edition, the authors have updated their coverage of CUDA, including coverage of newer libraries, such as CuDNN, moved content that has become less important to appendices, added two new chapters on parallel patterns, and updated case studies to reflect current industry practices. Teaches computational thinking and problem-solving techniques that facilitate high-performance parallel computing Utilizes CUDA version 7.5, NVIDIA's software development tool created specifically for massively parallel environments Contains new and updated case studies Includes coverage of newer libraries, such as CuDNN for Deep Learning

An Introduction To Parallel Programming

An Introduction to Parallel Programming PDF
Author: Peter Pacheco
Publisher: Morgan Kaufmann
ISBN: 012804618X
Size: 72.15 MB
Format: PDF, Kindle
Category : Computers
Languages : en
Pages : 496
View: 6782

Get Book

An Introduction to Parallel Programming, Second Edition presents a tried-and-true tutorial approach that shows students how to develop effective parallel programs with MPI, Pthreads and OpenMP. As the first undergraduate text to directly address compiling and running parallel programs on multi-core and cluster architecture, this second edition carries forward its clear explanations for designing, debugging and evaluating the performance of distributed and shared-memory programs while adding coverage of accelerators via new content on GPU programming and heterogeneous programming. New and improved user-friendly exercises teach students how to compile, run and modify example programs. Takes a tutorial approach, starting with small programming examples and building progressively to more challenging examples Explains how to develop parallel programs using MPI, Pthreads and OpenMP programming models A robust package of online ancillaries for instructors and students includes lecture slides, solutions manual, downloadable source code, and an image bank New to this edition: New chapters on GPU programming and heterogeneous programming New examples and exercises related to parallel algorithms

Cuda By Example

CUDA by Example PDF
Author: Jason Sanders
Publisher: Addison-Wesley Professional
ISBN: 0132180138
Size: 11.70 MB
Format: PDF, Kindle
Category : Computers
Languages : en
Pages : 312
View: 1258

Get Book

CUDA is a computing architecture designed to facilitate the development of parallel programs. In conjunction with a comprehensive software platform, the CUDA Architecture enables programmers to draw on the immense power of graphics processing units (GPUs) when building high-performance applications. GPUs, of course, have long been available for demanding graphics and game applications. CUDA now brings this valuable resource to programmers working on applications in other domains, including science, engineering, and finance. No knowledge of graphics programming is required—just the ability to program in a modestly extended version of C. CUDA by Example, written by two senior members of the CUDA software platform team, shows programmers how to employ this new technology. The authors introduce each area of CUDA development through working examples. After a concise introduction to the CUDA platform and architecture, as well as a quick-start guide to CUDA C, the book details the techniques and trade-offs associated with each key CUDA feature. You’ll discover when to use each CUDA C extension and how to write CUDA software that delivers truly outstanding performance. Major topics covered include Parallel programming Thread cooperation Constant memory and events Texture memory Graphics interoperability Atomics Streams CUDA C on multiple GPUs Advanced atomics Additional CUDA resources All the CUDA software tools you’ll need are freely available for download from NVIDIA. http://developer.nvidia.com/object/cuda-by-example.html

Cuda Application Design And Development

CUDA Application Design and Development PDF
Author: Rob Farber
Publisher: Elsevier
ISBN: 0123884268
Size: 35.13 MB
Format: PDF, Kindle
Category : Computers
Languages : en
Pages : 315
View: 6665

Get Book

Machine generated contents note: 1. How to think in CUDA 2. Tools to build, debug and profile 3. The GPU performance envelope 4. The CUDA memory subsystems 5. Exploiting the CUDA execution grid 6. MultiGPU applications and scaling 7. Numerical CUDA, libraries and high-level language bindings 8. Mixing CUDA with rendering 9. High Performance Machine Learning 10. Scientific Visualization 11. Multimedia with OpenCV 12. Ultra Low-power Devices: Tegra.

Structured Parallel Programming

Structured Parallel Programming PDF
Author: Michael D. McCool
Publisher: Elsevier
ISBN: 0124159931
Size: 43.20 MB
Format: PDF, ePub
Category : Computers
Languages : en
Pages : 406
View: 6820

Get Book

Programming is now parallel programming. Much as structured programming revolutionized traditional serial programming decades ago, a new kind of structured programming, based on patterns, is relevant to parallel programming today. Parallel computing experts and industry insiders Michael McCool, Arch Robison, and James Reinders describe how to design and implement maintainable and efficient parallel algorithms using a pattern-based approach. They present both theory and practice, and give detailed concrete examples using multiple programming models. Examples are primarily given using two of the most popular and cutting edge programming models for parallel programming: Threading Building Blocks, and Cilk Plus. These architecture-independent models enable easy integration into existing applications, preserve investments in existing code, and speed the development of parallel applications. Examples from realistic contexts illustrate patterns and themes in parallel algorithm design that are widely applicable regardless of implementation technology. The patterns-based approach offers structure and insight that developers can apply to a variety of parallel programming models Develops a composable, structured, scalable, and machine-independent approach to parallel computing Includes detailed examples in both Cilk Plus and the latest Threading Building Blocks, which support a wide variety of computers

Multicore And Gpu Programming

Multicore and GPU Programming PDF
Author: Gerassimos Barlas
Publisher: Elsevier
ISBN: 0124171400
Size: 36.87 MB
Format: PDF, ePub, Mobi
Category : Computers
Languages : en
Pages : 698
View: 5731

Get Book

Multicore and GPU Programming offers broad coverage of the key parallel computing skillsets: multicore CPU programming and manycore "massively parallel" computing. Using threads, OpenMP, MPI, and CUDA, it teaches the design and development of software capable of taking advantage of today’s computing platforms incorporating CPU and GPU hardware and explains how to transition from sequential programming to a parallel computing paradigm. Presenting material refined over more than a decade of teaching parallel computing, author Gerassimos Barlas minimizes the challenge with multiple examples, extensive case studies, and full source code. Using this book, you can develop programs that run over distributed memory machines using MPI, create multi-threaded applications with either libraries or directives, write optimized applications that balance the workload between available computing resources, and profile and debug programs targeting multicore machines. Comprehensive coverage of all major multicore programming tools, including threads, OpenMP, MPI, and CUDA Demonstrates parallel programming design patterns and examples of how different tools and paradigms can be integrated for superior performance Particular focus on the emerging area of divisible load theory and its impact on load balancing and distributed systems Download source code, examples, and instructor support materials on the book's companion website

Patterns For Parallel Programming

Patterns for Parallel Programming PDF
Author: Timothy G. Mattson
Publisher: Pearson Education
ISBN: 9780321630032
Size: 73.87 MB
Format: PDF, ePub
Category : Computers
Languages : en
Pages : 384
View: 4025

Get Book

The Parallel Programming Guide for Every Software Developer From grids and clusters to next-generation game consoles, parallel computing is going mainstream. Innovations such as Hyper-Threading Technology, HyperTransport Technology, and multicore microprocessors from IBM, Intel, and Sun are accelerating the movement's growth. Only one thing is missing: programmers with the skills to meet the soaring demand for parallel software. That's where Patterns for Parallel Programming comes in. It's the first parallel programming guide written specifically to serve working software developers, not just computer scientists. The authors introduce a complete, highly accessible pattern language that will help any experienced developer "think parallel"-and start writing effective parallel code almost immediately. Instead of formal theory, they deliver proven solutions to the challenges faced by parallel programmers, and pragmatic guidance for using today's parallel APIs in the real world. Coverage includes: Understanding the parallel computing landscape and the challenges faced by parallel developers Finding the concurrency in a software design problem and decomposing it into concurrent tasks Managing the use of data across tasks Creating an algorithm structure that effectively exploits the concurrency you've identified Connecting your algorithmic structures to the APIs needed to implement them Specific software constructs for implementing parallel programs Working with today's leading parallel programming environments: OpenMP, MPI, and Java Patterns have helped thousands of programmers master object-oriented development and other complex programming technologies. With this book, you will learn that they're the best way to master parallel programming too.

Cuda Programming

CUDA Programming PDF
Author: Shane Cook
Publisher: Newnes
ISBN: 0124159338
Size: 20.75 MB
Format: PDF, ePub, Mobi
Category : Computers
Languages : en
Pages : 576
View: 7768

Get Book

If you need to learn CUDA but don't have experience with parallel computing, CUDA Programming: A Developer's Introduction offers a detailed guide to CUDA with a grounding in parallel fundamentals. It starts by introducing CUDA and bringing you up to speed on GPU parallelism and hardware, then delving into CUDA installation. Chapters on core concepts including threads, blocks, grids, and memory focus on both parallel and CUDA-specific issues. Later, the book demonstrates CUDA in practice for optimizing applications, adjusting to new hardware, and solving common problems. Comprehensive introduction to parallel programming with CUDA, for readers new to both Detailed instructions help readers optimize the CUDA software development kit Practical techniques illustrate working with memory, threads, algorithms, resources, and more Covers CUDA on multiple hardware platforms: Mac, Linux and Windows with several NVIDIA chipsets Each chapter includes exercises to test reader knowledge

Hands On Gpu Programming With Python And Cuda

Hands On GPU Programming with Python and CUDA PDF
Author: Dr. Brian Tuomanen
Publisher: Packt Publishing Ltd
ISBN: 1788995228
Size: 18.77 MB
Format: PDF, Kindle
Category : Computers
Languages : en
Pages : 310
View: 6286

Get Book

Build real-world applications with Python 2.7, CUDA 9, and CUDA 10. We suggest the use of Python 2.7 over Python 3.x, since Python 2.7 has stable support across all the libraries we use in this book. Key Features Expand your background in GPU programming—PyCUDA, scikit-cuda, and Nsight Effectively use CUDA libraries such as cuBLAS, cuFFT, and cuSolver Apply GPU programming to modern data science applications Book Description Hands-On GPU Programming with Python and CUDA hits the ground running: you’ll start by learning how to apply Amdahl’s Law, use a code profiler to identify bottlenecks in your Python code, and set up an appropriate GPU programming environment. You’ll then see how to “query” the GPU’s features and copy arrays of data to and from the GPU’s own memory. As you make your way through the book, you’ll launch code directly onto the GPU and write full blown GPU kernels and device functions in CUDA C. You’ll get to grips with profiling GPU code effectively and fully test and debug your code using Nsight IDE. Next, you’ll explore some of the more well-known NVIDIA libraries, such as cuFFT and cuBLAS. With a solid background in place, you will now apply your new-found knowledge to develop your very own GPU-based deep neural network from scratch. You’ll then explore advanced topics, such as warp shuffling, dynamic parallelism, and PTX assembly. In the final chapter, you’ll see some topics and applications related to GPU programming that you may wish to pursue, including AI, graphics, and blockchain. By the end of this book, you will be able to apply GPU programming to problems related to data science and high-performance computing. What you will learn Launch GPU code directly from Python Write effective and efficient GPU kernels and device functions Use libraries such as cuFFT, cuBLAS, and cuSolver Debug and profile your code with Nsight and Visual Profiler Apply GPU programming to datascience problems Build a GPU-based deep neuralnetwork from scratch Explore advanced GPU hardware features, such as warp shuffling Who this book is for Hands-On GPU Programming with Python and CUDA is for developers and data scientists who want to learn the basics of effective GPU programming to improve performance using Python code. You should have an understanding of first-year college or university-level engineering mathematics and physics, and have some experience with Python as well as in any C-based programming language such as C, C++, Go, or Java.

Programming Massively Parallel Processors

Programming Massively Parallel Processors PDF
Author: David B. Kirk
Publisher: Createspace Independent Publishing Platform
ISBN: 9781548845155
Size: 12.45 MB
Format: PDF, Mobi
Category :
Languages : en
Pages : 142
View: 2996

Get Book

GPUs can be used for much more than graphics processing. As opposed to a CPU, which can only run four or five threads at once, a GPU is made up of hundreds or even thousands of individual, low-powered cores, allowing it to perform thousands of concurrent operations. Because of this, GPUs can tackle large, complex problems on a much shorter time scale than CPUs. Dive into parallel programming on NVIDIA hardware with CUDA by Chris Rose, and learn the basics of unlocking your graphics card. This updated and expanded second edition of Book provides a user-friendly introduction to the subject, Taking a clear structural framework, it guides the reader through the subject's core elements. A flowing writing style combines with the use of illustrations and diagrams throughout the text to ensure the reader understands even the most complex of concepts. This succinct and enlightening overview is a required reading for all those interested in the subject . We hope you find this book useful in shaping your future career & Business.

Parallel Computer Architecture

Parallel Computer Architecture PDF
Author: David E. Culler
Publisher: Gulf Professional Publishing
ISBN: 1558603433
Size: 80.55 MB
Format: PDF, Docs
Category : Computers
Languages : en
Pages : 1025
View: 5024

Get Book

This book outlines a set of issues that are critical to all of parallel architecture--communication latency, communication bandwidth, and coordination of cooperative work (across modern designs). It describes the set of techniques available in hardware and in software to address each issues and explore how the various techniques interact.

Massively Parallel Processing Applications And Development

Massively Parallel Processing Applications and Development PDF
Author: L. Dekker
Publisher: Elsevier
ISBN: 1483290433
Size: 48.95 MB
Format: PDF, ePub, Mobi
Category : Computers
Languages : en
Pages : 996
View: 2086

Get Book

The contributions of a diverse selection of international hardware and software specialists are assimilated in this book's exploration of the development of massively parallel processing (MPP). The emphasis is placed on industrial applications and collaboration with users and suppliers from within the industrial community consolidates the scope of the publication. From a practical point of view, massively parallel data processing is a vital step to further innovation in all areas where large amounts of data must be processed in parallel or in a distributed manner, e.g. fluid dynamics, meteorology, seismics, molecular engineering, image processing, parallel data base processing. MPP technology can make the speed of computation higher and substantially reduce the computational costs. However, to achieve these features, the MPP software has to be developed further to create user-friendly programming systems and to become transparent for present-day computer software. Application of novel electro-optic components and devices is continuing and will be a key for much more general and powerful architectures. Vanishing of communication hardware limitations will result in the elimination of programming bottlenecks in parallel data processing. Standardization of the functional characteristics of a programming model of massively parallel computers will become established. Then efficient programming environments can be developed. The result will be a widespread use of massively parallel processing systems in many areas of application.

The Massively Parallel Processor

The Massively Parallel Processor PDF
Author: Jerry L. Potter
Publisher: MIT Press (MA)
ISBN: 9780262661799
Size: 12.31 MB
Format: PDF, Docs
Category : Computers
Languages : en
Pages : 304
View: 357

Get Book

This collection of articles documents the design of one such computer, a single instruction multiple data stream (SIMD) class supercomputer with 16,834 processing units capable of over 6 billion 8 bit operations per second.

Parallel Programming

Parallel Programming PDF
Author: Thomas Rauber
Publisher: Springer Science & Business Media
ISBN: 3642378013
Size: 65.21 MB
Format: PDF, Kindle
Category : Computers
Languages : en
Pages : 516
View: 6511

Get Book

Innovations in hardware architecture, like hyper-threading or multicore processors, mean that parallel computing resources are available for inexpensive desktop computers. In only a few years, many standard software products will be based on concepts of parallel programming implemented on such hardware, and the range of applications will be much broader than that of scientific computing, up to now the main application area for parallel computing. Rauber and Rünger take up these recent developments in processor architecture by giving detailed descriptions of parallel programming techniques that are necessary for developing efficient programs for multicore processors as well as for parallel cluster systems and supercomputers. Their book is structured in three main parts, covering all areas of parallel computing: the architecture of parallel systems, parallel programming models and environments, and the implementation of efficient application algorithms. The emphasis lies on parallel programming techniques needed for different architectures. For this second edition, all chapters have been carefully revised. The chapter on architecture of parallel systems has been updated considerably, with a greater emphasis on the architecture of multicore systems and adding new material on the latest developments in computer architecture. Lastly, a completely new chapter on general-purpose GPUs and the corresponding programming techniques has been added. The main goal of the book is to present parallel programming techniques that can be used in many situations for a broad range of application areas and which enable the reader to develop correct and efficient parallel programs. Many examples and exercises are provided to show how to apply the techniques. The book can be used as both a textbook for students and a reference book for professionals. The material presented has been used for courses in parallel programming at different universities for many years.