Data Mining For Business Analytics

Data Mining for Business Analytics PDF
Author: Galit Shmueli
Publisher: John Wiley & Sons
ISBN: 1118879368
Size: 47.87 MB
Format: PDF, ePub, Docs
Category : Mathematics
Languages : en
Pages : 576
View: 7046

Get Book

Data Mining for Business Analytics: Concepts, Techniques, and Applications in R presents an applied approach to data mining concepts and methods, using R software for illustration Readers will learn how to implement a variety of popular data mining algorithms in R (a free and open-source software) to tackle business problems and opportunities. This is the fifth version of this successful text, and the first using R. It covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, recommender systems, clustering, text mining and network analysis. It also includes: Two new co-authors, Inbal Yahav and Casey Lichtendahl, who bring both expertise teaching business analytics courses using R, and data mining consulting experience in business and government Updates and new material based on feedback from instructors teaching MBA, undergraduate, diploma and executive courses, and from their students More than a dozen case studies demonstrating applications for the data mining techniques described End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented A companion website with more than two dozen data sets, and instructor materials including exercise solutions, PowerPoint slides, and case solutions www.dataminingbook.com Data Mining for Business Analytics: Concepts, Techniques, and Applications in R is an ideal textbook for graduate and upper-undergraduate level courses in data mining, predictive analytics, and business analytics. This new edition is also an excellent reference for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology.

Data Mining For Business Intelligence

Data Mining for Business Intelligence PDF
Author: Galit Shmueli
Publisher: John Wiley and Sons
ISBN: 1118126041
Size: 77.46 MB
Format: PDF, Docs
Category : Mathematics
Languages : en
Pages : 428
View: 5287

Get Book

Praise for the First Edition " full of vivid and thought-provoking anecdotes needs to be read by anyone with a serious interest in research and marketing." —Research magazine "Shmueli et al. have done a wonderful job in presenting the field of data mining a welcome addition to the literature." —computingreviews.com Incorporating a new focus on data visualization and time series forecasting, Data Mining for Business Intelligence, Second Edition continues to supply insightful, detailed guidance on fundamental data mining techniques. This new edition guides readers through the use of the Microsoft Office Excel add-in XLMiner for developing predictive models and techniques for describing and finding patterns in data. From clustering customers into market segments and finding the characteristics of frequent flyers to learning what items are purchased with other items, the authors use interesting, real-world examples to build a theoretical and practical understanding of key data mining methods, including classification, prediction, and affinity analysis as well as data reduction, exploration, and visualization. The Second Edition now features: Three new chapters on time series forecasting, introducing popular business forecasting methods including moving average, exponential smoothing methods; regression-based models; and topics such as explanatory vs. predictive modeling, two-level models, and ensembles A revised chapter on data visualization that now features interactive visualization principles and added assignments that demonstrate interactive visualization in practice Separate chapters that each treat k-nearest neighbors and Naïve Bayes methods Summaries at the start of each chapter that supply an outline of key topics The book includes access to XLMiner, allowing readers to work hands-on with the provided data. Throughout the book, applications of the discussed topics focus on the business problem as motivation and avoid unnecessary statistical theory. Each chapter concludes with exercises that allow readers to assess their comprehension of the presented material. The final chapter includes a set of cases that require use of the different data mining techniques, and a related Web site features data sets, exercise solutions, PowerPoint slides, and case solutions. Data Mining for Business Intelligence, Second Edition is an excellent book for courses on data mining, forecasting, and decision support systems at the upper-undergraduate and graduate levels. It is also a one-of-a-kind resource for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology.

Data Mining For Business Intelligence

Data Mining for Business Intelligence PDF
Author: Galit Shmueli
Publisher: Wiley-Interscience
ISBN:
Size: 70.61 MB
Format: PDF, Mobi
Category : Mathematics
Languages : en
Pages : 279
View: 495

Get Book

Learn how to develop models for classification, prediction, and customer segmentation with the help of Data Mining for Business Intelligence In today's world, businesses are becoming more capable of accessing their ideal consumers, and an understanding of data mining contributes to this success. Data Mining for Business Intelligence, which was developed from a course taught at the Massachusetts Institute of Technology's Sloan School of Management, and the University of Maryland's Smith School of Business, uses real data and actual cases to illustrate the applicability of data mining intelligence to the development of successful business models. Featuring XLMiner, the Microsoft Office Excel add-in, this book allows readers to follow along and implement algorithms at their own speed, with a minimal learning curve. In addition, students and practitioners of data mining techniques are presented with hands-on, business-oriented applications. An abundant amount of exercises and examples are provided to motivate learning and understanding. Data Mining for Business Intelligence: Provides both a theoretical and practical understanding of the key methods of classification, prediction, reduction, exploration, and affinity analysis Features a business decision-making context for these key methods Illustrates the application and interpretation of these methods using real business cases and data This book helps readers understand the beneficial relationship that can be established between data mining and smart business practices, and is an excellent learning tool for creating valuable strategies and making wiser business decisions.

Business Intelligence And Data Mining

Business Intelligence and Data Mining PDF
Author: Anil Maheshwari
Publisher: Business Expert Press
ISBN: 1631571214
Size: 67.30 MB
Format: PDF, Mobi
Category : Business & Economics
Languages : en
Pages : 162
View: 769

Get Book

“This book is a splendid and valuable addition to this subject. The whole book is well written and I have no hesitation to recommend that this can be adapted as a textbook for graduate courses in Business Intelligence and Data Mining.” Dr. Edi Shivaji, Des Moines, Iowa “As a complete novice to this area just starting out on a MBA course I found the book incredibly useful and very easy to follow and understand. The concepts are clearly explained and make it an easy task to gain an understanding of the subject matter.” -- Mr. Craig Domoney, South Africa. Business Intelligence and Data Mining is a conversational and informative book in the exploding area of Business Analytics. Using this book, one can easily gain the intuition about the area, along with a solid toolset of major data mining techniques and platforms. This book can thus be gainfully used as a textbook for a college course. It is also short and accessible enough for a busy executive to become a quasi-expert in this area in a couple of hours. Every chapter begins with a case-let from the real world, and ends with a case study that runs across the chapters.

Integration Challenges For Analytics Business Intelligence And Data Mining

Integration Challenges for Analytics  Business Intelligence  and Data Mining PDF
Author: Azevedo, Ana
Publisher: IGI Global
ISBN: 1799857832
Size: 77.20 MB
Format: PDF, ePub, Mobi
Category : Computers
Languages : en
Pages : 250
View: 3995

Get Book

As technology continues to advance, it is critical for businesses to implement systems that can support the transformation of data into information that is crucial for the success of the company. Without the integration of data (both structured and unstructured) mining in business intelligence systems, invaluable knowledge is lost. However, there are currently many different models and approaches that must be explored to determine the best method of integration. Integration Challenges for Analytics, Business Intelligence, and Data Mining is a relevant academic book that provides empirical research findings on increasing the understanding of using data mining in the context of business intelligence and analytics systems. Covering topics that include big data, artificial intelligence, and decision making, this book is an ideal reference source for professionals working in the areas of data mining, business intelligence, and analytics; data scientists; IT specialists; managers; researchers; academicians; practitioners; and graduate students.

Business Intelligence

Business Intelligence PDF
Author: Carlo Vercellis
Publisher: Wiley
ISBN: 9780470511381
Size: 26.19 MB
Format: PDF, Mobi
Category : Mathematics
Languages : en
Pages : 436
View: 2229

Get Book

Business intelligence is a broad category of applications and technologies for gathering, providing access to, and analyzing data for the purpose of helping enterprise users make better business decisions. The term implies having a comprehensive knowledge of all factors that affect a business, such as customers, competitors, business partners, economic environment, and internal operations, therefore enabling optimal decisions to be made. Business Intelligence provides readers with an introduction and practical guide to the mathematical models and analysis methodologies vital to business intelligence. This book: Combines detailed coverage with a practical guide to the mathematical models and analysis methodologies of business intelligence. Covers all the hot topics such as data warehousing, data mining and its applications, machine learning, classification, supply optimization models, decision support systems, and analytical methods for performance evaluation. Is made accessible to readers through the careful definition and introduction of each concept, followed by the extensive use of examples and numerous real-life case studies. Explains how to utilise mathematical models and analysis models to make effective and good quality business decisions. This book is aimed at postgraduate students following data analysis and data mining courses. Researchers looking for a systematic and broad coverage of topics in operations research and mathematical models for decision-making will find this an invaluable guide.

Data Mining For Business Applications

Data Mining for Business Applications PDF
Author: Longbing Cao
Publisher: Springer Science & Business Media
ISBN: 0387794204
Size: 66.63 MB
Format: PDF, ePub, Docs
Category : Computers
Languages : en
Pages : 302
View: 3532

Get Book

Data Mining for Business Applications presents the state-of-the-art research and development outcomes on methodologies, techniques, approaches and successful applications in the area. The contributions mark a paradigm shift from “data-centered pattern mining” to “domain driven actionable knowledge discovery” for next-generation KDD research and applications. The contents identify how KDD techniques can better contribute to critical domain problems in theory and practice, and strengthen business intelligence in complex enterprise applications. The volume also explores challenges and directions for future research and development in the dialogue between academia and business.

Business Intelligence And Analytics Systems For Decision Support Global Edition

Business Intelligence and Analytics  Systems for Decision Support  Global Edition PDF
Author: Efraim Turban
Publisher: Pearson Higher Ed
ISBN: 1292009268
Size: 32.56 MB
Format: PDF, Kindle
Category : Business & Economics
Languages : en
Pages : 688
View: 145

Get Book

Decision Support and Business Intelligence Systems provides the only comprehensive, up-to-date guide to today's revolutionary management support system technologies, and showcases how they can be used for better decision-making. The 10th edition focuses on Business Intelligence (BI) and analytics for enterprise decision support in a more streamlined book.

Patent Analysis And Mining For Business Intelligence

Patent Analysis and Mining for Business Intelligence PDF
Author: Bo Jin
Publisher: Springer
ISBN: 9789811060496
Size: 53.41 MB
Format: PDF, Kindle
Category : Computers
Languages : en
Pages :
View: 7380

Get Book

This book provides a comprehensive compendium of recent research on business intelligence-oriented patent data analysis and mining. Through the book, the readers will gain an essential understanding of the following topics: (1) text mining modeling for patent documents, including statistics modeling and key phrase extraction mining; (2) the patent retrieval method, including chuck based retrieval and retrieval fusion method; and (3) integrated business solutions for stock dynamics, technology prospecting, and minimizing legal exposure. This book provides an informative and insightful reference guide for researchers who are newcomers to patent data mining and business intelligence, as well as for professionals and practitioners from industry.

Data Mining For Business Intelligence

Data Mining for Business Intelligence PDF
Author: Galit Shmueli
Publisher: John Wiley & Sons
ISBN: 0470084855
Size: 33.75 MB
Format: PDF, Docs
Category : Mathematics
Languages : en
Pages : 298
View: 5196

Get Book

Learn how to develop models for classification, prediction, and customer segmentation with the help of Data Mining for Business Intelligence In today's world, businesses are becoming more capable of accessing their ideal consumers, and an understanding of data mining contributes to this success. Data Mining for Business Intelligence, which was developed from a course taught at the Massachusetts Institute of Technology's Sloan School of Management, and the University of Maryland's Smith School of Business, uses real data and actual cases to illustrate the applicability of data mining intelligence to the development of successful business models. Featuring XLMiner, the Microsoft Office Excel add-in, this book allows readers to follow along and implement algorithms at their own speed, with a minimal learning curve. In addition, students and practitioners of data mining techniques are presented with hands-on, business-oriented applications. An abundant amount of exercises and examples are provided to motivate learning and understanding. Data Mining for Business Intelligence: Provides both a theoretical and practical understanding of the key methods of classification, prediction, reduction, exploration, and affinity analysis Features a business decision-making context for these key methods Illustrates the application and interpretation of these methods using real business cases and data This book helps readers understand the beneficial relationship that can be established between data mining and smart business practices, and is an excellent learning tool for creating valuable strategies and making wiser business decisions.

Microsoft Data Mining

Microsoft Data Mining PDF
Author: Barry de Ville
Publisher: Elsevier
ISBN: 0080491847
Size: 80.96 MB
Format: PDF, ePub, Docs
Category : Computers
Languages : en
Pages : 320
View: 1300

Get Book

Microsoft Data Mining approaches data mining from the particular perspective of IT professionals using Microsoft data management technologies. The author explains the new data mining capabilities in Microsoft's SQL Server 2000 database, Commerce Server, and other products, details the Microsoft OLE DB for Data Mining standard, and gives readers best practices for using all of them. The book bridges the previously specialized field of data mining with the new technologies and methods that are quickly making it an important mainstream tool for companies of all sizes. Data mining refers to a set of technologies and techniques by which IT professionals search large databases of information (such as those contained by SQL Server) for patterns and trends. Traditionally important in finance, telecommunication, and other information-intensive fields, data mining increasingly helps companies better understand and serve their customers by revealing buying patterns and related interests. It is becoming a foundation for e-commerce and knowledge management. Unique book on a hot data management topic Part of Digital Press's SQL Server and data mining clusters Author is an expert on both traditional and Microsoft data mining technologies

Real World Data Mining

Real World Data Mining PDF
Author: Dursun Delen
Publisher: FT Press
ISBN: 0133551113
Size: 22.12 MB
Format: PDF, Mobi
Category : Computers
Languages : en
Pages : 288
View: 3666

Get Book

Use the latest data mining best practices to enable timely, actionable, evidence-based decision making throughout your organization! Real-World Data Mining demystifies current best practices, showing how to use data mining to uncover hidden patterns and correlations, and leverage these to improve all aspects of business performance. Drawing on extensive experience as a researcher, practitioner, and instructor, Dr. Dursun Delen delivers an optimal balance of concepts, techniques and applications. Without compromising either simplicity or clarity, he provides enough technical depth to help readers truly understand how data mining technologies work. Coverage includes: processes, methods, techniques, tools, and metrics; the role and management of data; text and web mining; sentiment analysis; and Big Data integration. Throughout, Delen's conceptual coverage is complemented with application case studies (examples of both successes and failures), as well as simple, hands-on tutorials. Real-World Data Mining will be valuable to professionals on analytics teams; professionals seeking certification in the field; and undergraduate or graduate students in any analytics program: concentrations, certificate-based, or degree-based.

Fundamentals Of Business Intelligence

Fundamentals of Business Intelligence PDF
Author: Wilfried Grossmann
Publisher: Springer
ISBN: 3662465310
Size: 40.16 MB
Format: PDF, ePub
Category : Computers
Languages : en
Pages : 348
View: 1325

Get Book

This book presents a comprehensive and systematic introduction to transforming process-oriented data into information about the underlying business process, which is essential for all kinds of decision-making. To that end, the authors develop step-by-step models and analytical tools for obtaining high-quality data structured in such a way that complex analytical tools can be applied. The main emphasis is on process mining and data mining techniques and the combination of these methods for process-oriented data. After a general introduction to the business intelligence (BI) process and its constituent tasks in chapter 1, chapter 2 discusses different approaches to modeling in BI applications. Chapter 3 is an overview and provides details of data provisioning, including a section on big data. Chapter 4 tackles data description, visualization, and reporting. Chapter 5 introduces data mining techniques for cross-sectional data. Different techniques for the analysis of temporal data are then detailed in Chapter 6. Subsequently, chapter 7 explains techniques for the analysis of process data, followed by the introduction of analysis techniques for multiple BI perspectives in chapter 8. The book closes with a summary and discussion in chapter 9. Throughout the book, (mostly open source) tools are recommended, described and applied; a more detailed survey on tools can be found in the appendix, and a detailed code for the solutions together with instructions on how to install the software used can be found on the accompanying website. Also, all concepts presented are illustrated and selected examples and exercises are provided. The book is suitable for graduate students in computer science, and the dedicated website with examples and solutions makes the book ideal as a textbook for a first course in business intelligence in computer science or business information systems. Additionally, practitioners and industrial developers who are interested in the concepts behind business intelligence will benefit from the clear explanations and many examples.

Decision Trees For Business Intelligence And Data Mining

Decision Trees for Business Intelligence and Data Mining PDF
Author: Barry De Ville
Publisher: SAS Press
ISBN: 9781590475676
Size: 61.80 MB
Format: PDF, ePub, Docs
Category : Business & Economics
Languages : en
Pages : 224
View: 3408

Get Book

This example-driven guide illustrates the application and operation of decision trees in data mining, business intelligence, business analytics, prediction, and knowledge discovery. It explains in detail the use of decision trees as a data mining technique and how this technique complements and supplements other business intelligence applications.

Microsoft Business Intelligence For Dummies

Microsoft Business Intelligence For Dummies PDF
Author: Ken Withee
Publisher: John Wiley & Sons
ISBN: 0470526939
Size: 14.74 MB
Format: PDF, Docs
Category : Computers
Languages : en
Pages : 432
View: 1126

Get Book

This book looks beyond the jargon at real business problems and common-sense solutions. Data is the lifeblood of your business. Microsoft BI tools help you collect that data; sort, store, and analyze it; find it when you need it; and use it to make decisions.